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derived between points of electronic energy hypersurfaces of pairs of isoelec- 
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1. Introduction 

In the Born-Oppenheimer  approximation the electronic energy Ee Of a molecular 
system of k electrons and N nuclei, in a given electronic state, is a function of 
the nuclear positions and nuclear charges: 

E~ = Ee(z,  r ) =  (gr(z, r)lffI~(z, r)lxlr(z, r)). (1) 

Here  components zi and rj of N and 3N dimensional vectors v and r correspond 
to the nuclear charge of nucleus i and nuclear position coordinate i, respectively. 
For fixed z, Ee(z,  r) is a 3N dimensional hypersurface over the space of nuclear 
coordinates. (Although for a general polyatomic molecule this dimension may be 
reduced to 3N - 6 by eliminating degrees of freedom corresponding to translation 
and rotation of the molecule as a whole, for convenience we shall consider 3N 
cartesian coordinates throughout this study). Alternatively, by generalizing our 
model and allowing components of z to take any non-negative real value, for a 
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fixed r the electronic energy Ee(z, r) becomes an N dimensional hypersurface 
over a segment of MR.1 This segment (formally one 2 ~ t h  of NR) is constrained by 
the non-negativity of the zj components for all the allowed z ~ NR. Whereas only 
those points on this hypersurface may correspond to chemical structures where 
all zi components are integers, one may expect that certain relations between 
various chemical structures can be derived by utilizing properties of a continuous 
hypersurface. 

In the expression for the electronic Hamil tonian/ te  it is convenient to collect the 
rj components according to the i nucleus index: 

" l wk N k Zi k 1 
He(Z,r)=-~LtA,-EE~-----n+ E 7-7 , (2) 

i t Ir i -r t l  t<c Ir ,-r t ,  I 
where r~ and r't refer to position vectors of nucleus i and electron t, respectively. 

For fixed nuclear framework the nuclear component  

N ZiZi' 

E~-=iE<~,lr~_rl, I (3) 

of the total energy 

Et = Ee + En (4) 

may be calculated easily by applying Coulomb's Law and it is the electronic energy 
component  that requires a more elaborate treatment. Whereas variations of En 
in the course of a conformational process or chemical reaction are easy to visualize 
and to correlate with the classical, intuitive concepts of steric effects, the variations 
of the electronic component  Ee usually have an equally important influence on 
such processes. In fact, AE, and AEe nearly cancel out along many reaction paths 
[1]. The fine variations in the slope and curvature properties of JEt, important in 
analysing the chemically relevant "reactive domains" of potential energy hyper- 
surfaces [2], are often dominated by the behaviour of Ee. 

Lower and upper bounds for Ee are very useful in obtaining approximations to 
wavefunctions and in estimating total energy differences [3]. Upper  bounds may 
easily be obtained by the variational theorem for the lowest electronic state of 
atomic or molecular systems. Lower bounds of energy expectation values may be 
used to estimate the differences between approximate and exact wavefunctions 
via Eckart 's  theorem [4]. At least in principle both lower and upper bounds may 
be obtained as close to the exact value as desired, e.g. by applying the theorem 
of Mazziotti and Parr [5]. However,  the actual calculation of reasonably accurate 
bounds involves optimizations that are just as (or more) tedious as the direct 
optimization of the wavefunction itself. 

Most optimization methods applied to wavefunctions and some of the techniques 
used to derive upper and lower energy bounds, are based on the continuity of Ee 

1 In deviation from the common custom, we shall use left superscript rather than right superscript 
to indicate the dimension of the space. 
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and some of its derivatives with respect to various parameters.  Some of the 
differentiability conditions, however, may be replaced by convexity conditions 
[6, 7]. Convexity properties of energy expectation values are easier to establish 
than analyticity and arguments based on convextiy properties are also free from 
some of the ambiguities associated with Taylor expansion methods [6, 7]. Con- 
vexity properties in relation with the variational theorem have been used to obtain 
various inequalities for atoms, jellium and for special molecular problems, one 
of the interesting results for molecules being a rigorous proof that the electronic 
energy of a molecular system is minimum when all nuclei are at the same point 
[7, 8] ("United atom"). 

Convexity relations are often not properly appreciated, although they may be 
expected to provide information on some more general problems of molecular 
physics, such as energy relations between isoelectronic molecules, conformational 
behaviour and chemical reaction paths. In this study, an attempt is made to 
establish inequality relations for a class of chemical problems of the above types. 
In particular, relations between special points on the electronic energy hypersur- 
faces Ee(Z,  r) ,  belonging to different but isoelectronic molecular systems, are 
investigated. Detailed proof is given only for special nuclear configurations, 
although it is expected that similar inequalities are valid for a much broader  
variety of nuclear configurations. 

2. Discussion 

Consider a set A of nuclei, A ={Ai}l=l and a set RA of arbitrary points, 
RA = {ri}l=l in the three dimensional space. Let  us assume that nucleus Ai is at 
point ri and that the number k of electrons is fixed. The entire nuclear arrange- 
ment and any extension of it will be referred to as "molecule",  even if its geometry 
does not resemble that of any stable molecule. Furthermore,  consider a set R B  
of points, R B  = {Pj}i'=l in three space, fulfilling the following condition: 

For an arbitrary nucleus X ,  placed at points p j ~  RB,  (] = 1 " �9 �9 m )  the isomeric 
molecules composed from nuclei {Ai} l=l  and X, i.e. 

{ A i } ~ X ( p l ) ,  {A~}~X(p2)  . . . .  { A i } ~ X ( p m )  (i = 1 . . .  I) (5) 

are either superimposable or may be derived from each other by an improper 
rotation. 

The fulfillment of condition (5) depends both on the mutual spatial arrangements 
of points in R A  and Re, and on the nature of nuclei Ai, e.g. on the presence of 
identical nuclei and in general on the symmetry of the entire nuclear arrangement. 

A set of n "molecules" {Ma}a~=l of k electrons may be constructed by combining 
nuclei {Ai}~ at positions {r~}~ with n possibly but not necessarily different sets of 
nuclei B a = {B]}j~=I, a = 1 . . . .  n, in positions {Pj}j%l. For fixed RA and R B  the 
first, second and n-th of these molecules may be represented as 

M 1 t 1 m M 2 =  l 2 . ,  M n t ~ = {A~}I{Bi  }1 . . . .  {A,}I{Bj }1, ~--- {A,}I{B~ }1 

i = 1 . . . .  I, ] = 1 . . . .  m, (6) 
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respectively. Some positions of set RB may be unoccupied, i.e. the formal nuclear 
charge of B~ may be zero for certain/" and a, and in special cases sets RA and A 
may be empty. In such special cases condition (5) is trivially fulfilled for any point 
set RB. By allowing for zero nuclear charges, "molecules" M a differ only in the 
nuclear charges. 

A rrl  a r r t  

A set of operators {Zj}~.= 1 may be defined, operating on the sets of B a = {B~- }j=l 
by 

"~ a m ZABA; , : I  = x(p ; ,  z=) = x ~  (7) 

where X(pi ,  z a) = X/is  a nucleus in position pj with a nuclear charge 2 of z a, where 

z = z ( B j ) ,  (8) 
i=1 

i.e. the sum of all nuclear charges of set {B~}i~1. Operator  U-i then simply 
eliminates the set of nuclei {Bj~,}i,"=~ and replaces it by a single nucleus in position 
pj, keeping the total nuclear charge constant. 

As a consequence of condition (5), the total energy Et and its nuclear and 
electronic components,  En and Ee of molecules 

;~iM a = Z,i{ai}~{B~}'~ = {Ai}~Zq{B~}~ = {ml}~X~ (9) 

are independent  of index/'. That  is, 

E , (2 ;M a) = E7 "x (10a) 

E ,  (2 jM a) = E'~ "x (10b) 

E, (2 ,M ~ = Ee ~'x (lOc) 

where upper index X distinguishes these quantities from the respective energy 
values E~, E~ and Ee ~ of the original molecule M a. If for two molecules, M ~ and 
M b, Eq. (8) gives 

z ~ = z  b (11) 

then 

E'~ "x = E~ "x (12a) 

E~'X= E~ "x (12b) 

and 
E'~ "x = E eb'X. (12C) 

Utilizing the fact that the hypersurface E~ (z) of the lowest electronic state of a 
given symmetry type is jointly concave in z, a general property of operators Zj, 
with respect to variations in the electronic energy Ee, may be established. The 
result is analogous to that obtained for the simplest case of united atom [8], 

2 Throughout the remainder of this paper upper indices will be used as identifying indicies and 
n e v e r  a s  powers. 
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however, the proof is sufficiently general to give inequality relations for the 
electronic energies of molecules of the type M a. In the special case of R A  = Q ,  
the theorem reduces to the familiar result that Ee is minimum for the united atom 
[8]. 

Theorem: If M is a molecule of k electrons and of N nuclei 
1 m l m {Ai}i=x, {Bi}i=I, l + m = N, at points {ri}i=l(= RA),  {pi}i=x(= RB) 

fulfilling condition (5), and M is in the lowest electronic state of a given symmetry 
type, then Ee (ZrM) is independent of ]' and 

E e ( Z j , M ) < - E e ( M ) ,  ( j ' =  1 . . . .  m). 

Proof: Consider a set of n molecules, {Ma}~=l with nuclear charges {z"}~=l and 
geometries specified by sets RA and Rm Furthermore,  consider an additional 
molecule M ~ of the same geometry, and nuclear charges given by 

z(ot)= ~ aaz a (13) 
a = l  

aa = 1, aa -> 0. (14) 
a = l  

Here  the first l components of all z a vectors and vector z (or) are common. For a 
fixed RA, RB and k the z dependence of Ee may be made explicit 

Ee -- Ee(Z). (15) 

If ~ is the wavefunction of molecule M ~' with nuclear charges z (or) then ~ is a 
good trial function for any of the M a molecules with nuclear charges z a. By 
applying Eq. (14), the variational theorem and the fact that/-)e is linear in z, we 
may write for a normalized 

E a,~Ee(M a) = E a a G ( z  a) -< E o  < l re(Z 
a a a 

-(~l'IE~ne(z )N,>=(~I , ~z lq'> 
a a 

= ( v l / %  (z  (~))l~'> = Ee(Z(Ot)) = Ee(M~ 
that is 

(16) 

a ~ o t  
Y~o~,~Ee(M ) - E e ( M  ), (17a) 
a 

or more explicitly 

~. a ,Ee  ( M ( z  a)) <_ Ee c~,z . (17) 
a 

Inequality (17) is a rather general form of the convexity property of Coulomb 
systems and is an important  property of the Ee (z) electronic energy hypersurface. 
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1 m Consider now a molecule M = {A/}i= l{Bj}r= 1 and the corresponding z vector with 
components  

z, = z ( A , )  i <- l (18) 

zl+j = z (Bf l  (19) 

and define chemical structures {Mr}~=l by 

M r = 2rM, (j  = 1 . . . .  m),  (20) 

where operator  Z,r is defined in Eq. (7). 

Here  in each M r the first l nuclei, hence the first l components of each vector z 
are the same as in M. 

Let  us choose components 'of  ~ as 

Zl+j 
a r -  z j, (21) 

where z / is given by (8), then 

aj = 1 (22) 
i = 1  

that is equivalent to condition (14), since in this case m = n. Note however, that 
zt+j = 0, that is, a r = 0 is possible for some (but not simultaneously all) indices j. 
Due to the properties of operators 2,j and to the construction of set {M j} the 
constant z i' is independent  of index ]'. Consequently, inequality (17) takes the 
special form 

1 " 
r~ 1 z,+jEr (M r) --< Ee (M). (23) 

Due to the definition of point set RB and condition (5), in the absence of external 
fields all the M r molecules are equivalent in energy and He (M r) too, is independent 
of index ]. Consequently, 

, 1 m 
E e ( M ' ) - ~  r~=l zl+r <-- J~e (M)  

that is 

Ee(M;)<--Ee(M).  Q.E.D. (24) 

It i s always possible to establish lower and upper bounds for the electronic energy 
of a molecular system at any point of the Ee (z, r) hypersurface (z fixed), either 
by the main result of the theorem (inequality 24) or by convexity relation (17). 
The z vector of a molecule may always be derived from z vectors of isoelectronic 
molecules either by applying operators Zi or by generating linear combinations 
fulfilling conditions (13) and (14). 

In the latter case, however, it may be necessary to involve a large number of 
isoelectronic molecules and to include all the corresponding z vectors in the linear 
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combination. Before considering examples for the application of the theorem, we 
shall investigate a special case of such linear combinations. For any conformation 
(RA, RB) of an arbitrary molecule M of nuclear charges z, and total nuclear charge 

N 

z = Y~ z,, (25) 
i = 1  

a simple linear combination, fulfilling (13) and (14) may be constructed in the 
following way. It is always possible to find an isoelectronic molecule M "  of nuclear 
charges z ", of total nuclear charge 

n 
z = z (26) 

where 

N 
rt rt 

z = Z z , ,  (27) 
i = l  

and of nuclear positions corresponding to RA, RB. Since no Zj operations are 
needed to arrive at convexity relation (17), point set RB may be empty.  Further-  
more,  n -  1 = N  identical atoms of nuclear charge z and of k electrons are 
included in the linear combination, as "molecules"  M a . . . .  M n-~. It is always 
possible to find a small enough a~, 1 > ~n > O, for which 

n 
Zi - -  OlnZ i ~ 0 (28) 

for every index i, since each element of point sets RA, RB is assumed to be 
occupied in M and all nuclear charges are finite. Since the position of a single 
a tom in vacuum may be chosen arbitrarily, one may select a z u vector for 
"molecule"  M a as 

Z~=Z&a ( a = 1 , 2  . . . .  n - l ) .  (29) 

A linear combination 

a 

= z (30) OlaZ 
a = l  

with a fixed a , ,  having proper ty  (28), and with 

o~a = (za - a , z  ~)/z, (31) 

a = 1, 2 . . . .  n - 1 (31a) 

fulfills both conditions (13) and (14). Consequently,  for isoelectronic molecules 
M, M n and a tom M 1 convexity relation (17) holds and takes the special form: 

(1 - a,,)Ee(M 1) + oznEe(M n) ~ Ee(M). (32) 

For any molecule M in any conformation one may find M "  and M 1 fulfilling 
the above conditions. For a given M and M "  pair inequality (32) gives the sharpest 
result for the largest value of an that is permit ted by (28). 
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The theorem itself is directly applicable to those points of electronic energy 
hypersurfaces of isoelectronic molecules where condition (5) is fulfilled. Several 
simple examples are given in Fig. 1. 

H 
H.o... C / H,,... C" - 

H~" ~O" H f  ~F 

0 
/" Me C / / S  

0 

H 
,, Li H ~  

C . . . . . . . .  C~C:  
/ ~ L i  / 

H H 

Be Be Be 

Be Be Be Be 

Be Be Be 

Be 

Be 

O 

H fH  
H~ N N/H i :Si" 
H ~H a ~ a  

NH 3 Ne 

/ 9  
; N ~ N :  

o / 

s / /  
$i 

\s 
Fig. 1. Examples (a)z(g) for isoelectronic 
molecule-pairs M, ZM 
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In example (a), the two sets of nuclei are the following: A = {C, Ht,  Ha}, B = 
{O, H3} and X = F 3. Those point pairs on the respective electronic energy 
hypersurfaces are directly comparable where nuclear coordinates belonging to 
point set RA are common, and condition (5) is fulfilled for nuclear coordinates 
belonging to RB and X. That  is, the two CH1H2 moieties have the same geometry, 
and the out of plane angles for the H3, O, and F atoms as well as the C--H3, 
C - - O  and C - - F  distances are the same. 

There  are infinitely many such point pairs along the two electronic energy 
hypersurfaces where these conditions are fulfilled, and at such points at least one 
of these molecules must be distorted with respect to their equilibrium geometries. 
According to the theorem for any such point pair 

Ee (CHzF-) -< Ee (CH30-) .  (33) 

Similarly, by choosing the set of nuclei A as those in the H 3 C - - C  moiety and 
taking B = {O, O}, X = S, 

Ee (H3C28-) ~-~ Ee (H3C202) (34) 

is valid in example (b), subject to geometric conditions (5). 

Although condition (5) appears quite restrictive, in some special cases the 
theorem gives useful results for nuclear configurations that do not fulfill (5). 

If condition (5) applies for a geometry r of molecule pair Mj(r) and M(r),  then 

Ee (Mj (r)) <- Ee (M(r)). (35) 

If, however, r <1) and r ~z) are two geometries that do not necessarily fulfill condition 
(5) but 

Ee(Mj(r~l)) ) <-- Ee(Mj(r) ) (36) 

and 

Ee (M(r)) <- E.  (M(r<2)) ) (37) 

then, clearly 

E~ (M i(r<t)) ) <- Ee (M(r~2))) (38) 

is also valid. For a given r entire coordinate domains R {1), (r~ R (1)) and R {2), 
(rr R ~2)) may fulfill (36) and (37) respectively, and then point r may provide 
the link between the two hypersurfaces. 

Particularly important are those cases, where r ~) and r <2) are equilibrium 
geometries. In such cases inequalities (36) and (37) reflect conditions on the 
relaxation processes r--> r ~*) and r--> r (2) of molecules M/ and M, respectively, 
provided that the common r geometry fulfills condition (5). In the special case 

r = r (2) (39) 

3 Nuclei Ht and H2 are in a plane perpendicular to that of the paper. 
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it suffices to show that in the r -* r (1) relaxation process of Mj 

AE. -> 0 (40) 

since then AEe -< 0 follows from AE, - 0, valid in any relaxation process. That is, 
in such a case both (36) and (37) are fulfilled and inequality (38) applies. 

The relaxation process in example (c) has the above property. If A = {H, H, C}, 
B = {Li, Li} and X = C, then there are infinitely many geometries r that fulfill 
condition (5), and thus the theorem is applicable. By choosing r as the equilibrium 
geometry [9] of the Li compound, (= M),  condition (36) is trivially fulfilled. The 
L i - - C  bond length is calculated as 2 .128/~ [9]. The equilibrium C - - C  bond length 
in carbene H2C2 (=mi) is much shorter, being a formal double bond [10]. 
Although the L i - -L i  repulsion is missing in M/, this is more than compensated 
for by an increased C. . .C repulsion at the shorter bond distance, consequently 
AEn > 0 in the r + r [1] relaxation process of Mj. That is ,  

Ee (H2C2) < Ee (H2CLi2) (41) 

is valid for the equilibrium geometries as well. The relaxation process may be 
very general and may even involve intermediate energy barriers as long as for the 
net process AEt < 0 and AEn > 0. In example (c), an Mj(r) ~ H--C-----C--H proton 
shift and formation of the equilibrium geometry of acetylene is also associated 
with AEt < 0 and AEn > 0, consequently inequality (41) applies for acetylene as 
well as for carbene H 2 C = C .  

In microclusters or crystal lattices, where the relaxation is constrained by the 
lattice itself, an impurity-vacancy pair may take the role of X. In example (d), M 
is a Be cluster with a regular hexagonal close-packed lattice, whereas Mj contains 
a vacancy-Oxygen pair, with the Oxygen replacing a Beryllium. In this example 
the rest of the cluster corresponds to nucleus set A, and B = {Be, Be}, X = 0. As 
long as the translational symmetry in the neighbourhood A of set B is preserved 
(i.e. the cluster is large and there are no deformations), condition (5) hence the 
theorem applies, indicating lower electronic energy for the cluster with the 
impurity-vacancy pair, than for the "pure"  cluster. 

Whereas most of the above examples with non-equilibrium geometries represent 
distorted conformations that may arise in large amplitude vibrations or conforma- 
tional changes, the theorem may also be applied for certain points of electronic 
energy hypersurfaces along reaction paths involving distinct reactants. In example 
(e), A = {H, H, H, H}, B = {N, N} and X = Si. The electronic energies of various 
HzN--NH2 structures, having at least a point of inversion or a reflection plane 
perpendicular to the N - - N  bond, represent upper bounds for the electronic 
energy of the corresponding arrangements of molecules H2+SiH2, that may 
arise in the fragmentation reaction of Sill4. 

In example (f), set A = • ,  empty, consequently condition (5) is fulfilled for any 
geometry and 

Ee (Ne) -< Ee (NH3) (42) 

that is, the theorem reduces to the inequality for the united atom case [7, 8]. 
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It is possible to generalize the main result of the theorem by considering 3s 
dimensional p~ vectors in set R~, of condition (5), representing the cartesian 
coordinates of s > 1 nuclei, rather than that of individual nuclei (s = 1). In this 

! t r t  " case both X '  and the B~ elements of B'  = {Bi}j=l correspond to sets of s nuclei. 
A r 

Similarly, in the definition of operators Z j, Eqs. (7) and (8), scalars z a and z(B~.) 
are replaced by s-dimensional vectors z 'a and z'(B~), respectively. Since a '" is 
the vector sum of the z'(B~ ~) nuclear charges at positions p~., operator  Z,~ 
generates a set of X'(p~., z '~) nuclei of nuclear charges z 'a at s points specified by 
p}, replacing all nuclei in the entire set B '  and preserving the total nuclear charge 
of the molecule: 

A, ,~ m - X j .  (43) Zi~Bj, )j,~ =X' ( t ,~ ,  z ~ ) -  '~ 

With these generalizations the entire proof may be repeated and an analogous 
conclusion of form (24) may be obtained. 

In example (g) in Fig. 1 this generalized form of the theorem may be applied. Sets 
A and RA a r e  empty and there are only two elements in set B '  = {B~, B&}, both 
corresponding to an NO2 moiety (s = 3) whereas set X '  is SIS2, a monomeric  unit 
of polymer (SiS2)n. For a distorted (bent) SiS2 "molecule"  the conditions (5), as 
generalized above, are fulfilled and the theorem yields 

Ee (SiS2) ~ Ee (O2NNO2). (44) 

As an extreme generalization of the Ee(r, z) electronic energy hypersurface 
concept, any such surface of fixed total nuclear charge z and fixed number of 
electrons k, may be regarded as a particular crossection of a hypersurface 
Eff(r I-~, z n) of z nuclei and k electrons, where the arguments are a 3z dimensional 
r H vector and a z dimensional z n vector. That  is, the Eff(r H, z H) hypersurface is 
embedded in a 4z + 1 dimensional s p a c e  4Z+lR, and is defined over the product 
space 3ZR @ZR. In the special case of z H nuclei (referred to by the Ef t  notation) 
the components of vector z n are 

Zf f= l  for all i .  (45) 

By allowing the cartesian coordinates of some of the H nuclei to become identical, 
the Ee (r, z) hypersurface of any isoelectronic molecule with the same total nuclear 
charge may be obtained as a crossection of Ef f ( r  n, zr4). This model allows for the 
simplest interpretation of the main result of the theorem: inequality (24) gives 
upper or lower bounds for "degenerate"  nuclear arrangements of coincident 
nuclear positions on the Eff(t  ~, z rz) electronic energy hypersurface. 

3. Conclusions 

An inequality relation is derived for special points r (restricted by symmetry, 
condition (5)) on the electronic energy hypersurfaces of pairs of isoelectronic 
molecules. If two additional inequalities, (36) and (37) are verified for some R (1) 
and R ~2) coordinate domains of their respective electronic energy hypersurfaces, 
a comparison at point r may establish inequality (24) for any point pair from R (1) 
and R (2), even if no numerical energy values are available. In special cases (Eq. 
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39) these  inequa l i t i e s  a re  e x t e n d e d  to equ i l i b r ium geomet r i e s ,  p r o v i d e d  tha t  the  
va r i a t ion  of  the  nuc lea r  r epu l s ion  t e r m  dur ing  the  r e l axa t ion  p rocess  fulfills 
cond i t i on  (40). 

A specia l  fo rm (Eq. 3 2) of  convexi ty  r e l a t ion  of Ee (z) hypersur faces ,  no t  r e s t r i c t ed  
by  cond i t i on  (5) is de r ived ,  tha t  gives a lower  b o u n d  for  the  e lec t ron ic  ene rgy  of  
a g e n e r a l  m o l e c u l e  of  a r b i t r a r y  g e o m e t r y .  

A n  analysis  of s impl ica l  complexes  and  convex  p o l y h e d r a  in the  abs t rac t  cha rge  
space  Z is g iven e l s ewhere  [11]. 

F u r t h e r  w o r k  on  the  t opo log ica l  p r o p e r t i e s  of  En(r n, z H) hype r su r f aces  is now 
in p rogress .  
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